Chem. Ber. 105, 1158-1167 (1972)

Hans Bock und Herbert Stafast¹⁾

Photoelektronenspektren und Moleküleigenschaften, IX²⁾

Die π -Systeme der *cis*- und *trans*-Dicyan-äthylene

Aus den Chemischen Instituten der Universität Frankfurt*)

(Eingegangen am 23. November 1971)

Die Photoelektronen(PE)-Spektren der Maleinsäure- und Fumarsäure-dinitrile werden an Hand ihrer Schwingungsfeinstrukturen zugeordnet. Die Ionisierungsenergien des π_z -Systems sind für das *cis*- und *trans*-Isomere identisch. Die unterschiedliche Lage der π_{xy} -Banden erlaubt, "through space"- und "through bond"-Wechselwirkungen abzuschätzen.

Photoelectron Spectra and Molecular Properties, IX²⁾

The π -Systems of the *cis*- and *trans*-Dicyanoethylenes

The photoelectron(PE) spectra of maleo- and fumarodinitriles are assigned on the basis of their vibrational fine structures. The ionization energies of the π_z -system are identical for the *cis* and *trans* isomer. From the different positions of the π_{xy} -bands, "trough space"- and "through bond" interactions can be estimated.

Die Verdrillung von p_{π} -Orbitalen liefert je nach Vorzeichen und Drehsinn folgende σ -Anteile:

Überlappung der p-Orbitale hebt ihre Entartung durch räumliche Wechselwirkung ("through space interaction"³) auf. Die bindenden oder antibindenden σ -Anteile (1) stabilisieren oder destabilisieren die Orbital-Kombinationen und erklären die verschieden großen Aufspaltungen:

- 1) Teil der Diplomarbeit von H. Stafast, Univ. Frankfurt 1971.
- ²⁾ VIII. Mitteil.: C. G. Pitt und H. Bock, Chem. Commun. 1972, 28.
- 3) R. Hoffmann, A. Imamura und W. J. Hehre, J. Amer. chem. Soc. 90, 1499 (1958).

^{*)} Neue Anschrift: 6 Frankfurt/Main 70, Ludwig Rehn-Str. 14.

Zusätzliche Abstoßung durch tieferliegende σ -Orbitale gleicher Symmetrierasse ("through bond interaction"³⁾) führt je nach Orbital-Anordnung zu weiteren Verschiebungen: Wie aus (2) ersichtlich, wird bei entgegengerichteter Drehung der p_{π} -Orbitale die symmetrische (s), bei gleichgerichteter Drehung die antisymmetrische (as) Orbital-Kombination angehoben.

Dieses qualitative Modell sollte sich z. B. an geeignet substituierten cis/trans-isomeren Äthylenen (3) überprüfen lassen:

Hierzu wählten wir die 1.2-Dicyan-äthylene, da bei Cyan-Substitution in der Regel ausgeprägte Schwingungsfeinstrukturen der PE-Banden beobachtet werden^{2,4}) und diese eine Zuordnung zu bestimmten Radikalkation-Zuständen — via *Koopmans* Theorem zu Molekülorbitalen⁵) — erleichtern.

⁴⁾ Vgl. z. B. C. Baker und D. W. Turner, Proc. Roy. Soc. [London] A 308, 19 (1968), und E. Heilbronner, V. Hornung und K. A. Muszkat, Helv. chim. Acta 53, 347 (1970).

⁵⁾ W. G. Richards, J. Mass Spectr. Ion Phys. 2, 419 (1969).

1. Orbitalkonstruktion nach Symmetrieargumenten

Dicyan-äthylene $C_4H_2N_2$ enthalten 28 Valenzelektronen, die im Grundzustand 14 Molekülorbitale besetzen. Hiervon sollten nach einer nützlichen Faustregel vier Molekülorbitale – Linearkombinationen überwiegend aus 2s-Atomorbitalen – außerhalb des He(1)-Photonen-Meßbereiches bis 21.21 eV liegen. Die verbleibenden 10 Molekülorbitale können drei – mehr oder weniger separierbaren – Elektronensystemen zugeteilt werden:

 (π_z)

Die rotationssymmetrischen Cyan-Substituenten sind formal in zwei orthogonale π -Komponenten zerlegbar, so daß das zur Molekülebene senkrechte π_z -System der Dicyan-äthylene aus 6 Zentren besteht. Für das *cis*-Isomere liefert symmetriegerechte Linearkombination bezüglich der in (4) schraftiert eingezeichneten Spiegelebene drei π_z -Orbitale der Symmetrierassen a_2 und b_1 in C_{2v} :

Diese zur Molekülebene antisymmetrischen π_z -Orbitale überlappen aus Symmetriegründen mit keinem der anderen Orbitaltypen und können daher isoliert betrachtet werden.

(n_N)

In grober Näherung sind auch die beiden Stickstoff-Elektronenpaare von den restlichen Molekülorbitalen abtrennbar; sie bilden je eine n_+ - und n_- -Kombination:

(xy)

Die übrigen fünf Molekülorbitale setzen sich aus den π_{xy} -Komponenten der Cyan-Gruppen sowie den σ_{C-H^-} und σ_{C-C} -Orbitalen des Äthylengerüstes zusammen. Wie bei den π_z -Orbitalen kombinieren nur Orbitale gleicher Symmetrierasse:

Es resultieren in der cis-Form drei xy-Molekülorbitale a1 und zwei b2.

Die vorstehende Orbitalkonstruktion nach Symmetrieargumenten läßt sich durch MO-Berechnungen z. B. nach dem EHT-Verfahren weitgehend reproduzieren. Die Ergebnisse für das *trans*-Isomere (C_{2h}) zeigt Abbild. 1.

Abbild. 1. Energieniveau-Schema und Diagramme der 10 höchsten besetzten EHT-Molekülorbitale für *trans*-Dicyan-äthylen (←···→ Orbitalsequenz nach PE-Spektren) Zusätzlich sei die Wechselwirkung zwischen den beiden Cyan-Gruppen diskutiert: Im π_z -Bereich ist weder im *trans*-Dicyan-äthylen ($d_{NC...CN} \approx 3.7$ Å) noch im *cis*-Isomeren ($d_{NC...CN} \approx 2.7$ Å) eine Aufspaltung "through space" zu erwarten; die π_z -Ionisierungsenergien sollten daher in ihrem Betrag vergleichbar sein. Wegen $d_{N...N}$ >2.5 Å sollte auch zwischen den beiden Cyan-Elektronenpaaren keine meßbare räumliche Wechselwirkung eintreten³); die wegen der ungeraden Anzahl verknüpfender σ -Bindungen (n = 5) mögliche "through bond"-Aufspaltung n_+/n_- muß kleiner sein als 0.37 eV, der Differenz der entsprechenden PE-Ionisierungsenergien im Dicyan⁶) (n = 3). Im π_{xy} -Bereich ist nur in der *cis*-Verbindung mit einer Überlappung der Cyan- π_{xy} -Komponenten zu rechnen, welche die symmetrische Kombination (vgl. (6): a_1) stabilisieren würde. Da jedoch die Beträge der in (6) dargestellten "through bond"-Destabilisierungen der beiden π_{xy} -Molekülorbitale a_1 und b_2 unbekannt sind, bleibt ihre Reihenfolge zunächst offen.

2. Zuordnung der PE-Spektren

Die He(I)-PE-Spektren von Maleinsäure- und Fumarsäure-dinitril sind in Abbild. 2 dargestellt, gedehnte Aufnahmen einzelner Banden oder Bandenkomplexe mit zugeordneten Schwingungsfeinstrukturen in Abbild. 3 und 4. Die zugehörigen Zahlenwerte sind in den Tabellen 1 (*cis*) und 2 (*trans*) zusammengefaßt.

Abbild. 2. He(1)-PE-Spektren von cis- und trans-Dicyan-äthylen

6) C. Baker und D. W. Turner, Proc. Roy. Soc. [London] A 308, 19 (1968).

Abbild. 3. Gedehnte Aufnahmen der ersten Bande sowie des π .n-Bandenkomplexes (12.5 eV bis 14.0 eV) von *cis*- und *trans*-Dicyan-äthylen mit zugeordneten Schwingungsfeinstrukturen

Tab. 1. Vertikale PE-Ionisierungsenergien	IE_{v} (eV)	von	cis-Dicyan-äthy	ylen u	nd Verg	leich			
zugeordneter Schwingungsfrequenzen v* (d	cm ⁻¹) der	Mole	külkation-Zustä	inde n	nit dener	ı des			
Grundzustandes (v)									

IEv	MO		v*	v ⁸⁾	Schwingungstyp ⁸⁾
11.15	πz	(2b ₁)	2080	2230	$C \equiv N$ -,,stretch"
			1440	1597	C = C-,,stretch"
12.77	π_{XY}	(5b ₂)	1960	2230	C = N-,,stretch"
13.35	π_{XY}	(6a ₁)	_	—	_
≈13.5	2 n _N	$(5a_1)$		_	_
		$(4b_2)$			
	π_z	$(1 a_2)$		_	
14.38	π_z	$(1 b_1)$	2160	2230	C = N-,,stretch"
	_		800	877	C-C-, stretch"
			400	480	$C - C \equiv N$ -,,bend"
15.75	σC-H	$(4a_1?)$	2480	3072	C-H-,,stretch"
17.4	$\sigma C - H $?	$(3b_2?)$		_	
19.1	σ C C ?	$(3a_1?)$		-	—

Schwingungsfeinstrukturen von PE-Banden erlauben Rückschlüsse auf die Elektronenverteilung im zugehörigen Molekülorbital⁷): In den Frequenzunterschieden

⁷⁾ Vgl. z. B. E. Heilbronner, K. A. Muszkat und J. Schäublin, Helv. chim. Acta 54, 58 (1971), und D. W. Turner, C. Baker, A. D. Baker und C. R. Brundle, Molecular Photoelectron Spectroscopy, S. 7, Wiley-Interscience, London-New York-Sydney-Toronto 1970.

⁸⁾ F. A. Miller und O. Sala, Spectrochim. Acta 20, 1223 (1964).

zwischen Grund- und Radikalkation-Zustand spiegelt sich die Verminderung bindender oder antibindender Wechselwirkungen wider. Orbitaldiagramme wie (3) bis (6) helfen daher bei der Zuordnung von PE-Banden mit Schwingungsfeinstrukturen.

Abbild. 4. Gedehnte Aufnahmen der π -Bande bei 14.4 eV sowie der jeweils ersten σ -Bande von *cis*- und *trans*-Dicyan-äthylen mit zugeordneten Schwingungsfeinstrukturen

Tab. 2. Vertikale PE-Ionisierungsenergien IE_v (eV) von *trans*-Dicyan-äthylen und Vergleich zugeordneter Schwingungsfrequenzen v* (cm⁻¹) der Molekülkation-Zustände mit denen des Grundzustandes (v)

IEv	мо		v*	v8)	Schwingungstyp 8)
11.15	π,	(2 a _u)	2160	2232	C = N-,,stretch"
	-		1360	1611	C = C-,,stretch"
12.78	π_{xy}	(6ag)	2160	2232	$C \equiv N$ -,,stretch"
	~,	. 8,	640	545	C = C - C- "bend"
13.10	π_{xy}	(5 b ₁₁)	480	545	C = C - C-,,bend"
13.44	2n _N	$(5a_g)$ $(4b_u)$	880	1002	C-C-,,stretch"
13.67	π_z	$(1 b_g)$	2080 960	2232 1002	$C \equiv N$ -,,stretch" C - C-,,stretch"
14.41	πΖ	(1 a _u)	2160 480	2232 545	C = N-,,stretch" C = C - C-,,bend"
15.62	σс_н	$(4 a_g?)$	2560	3049	C-H-,,stretch"
18.2	C-C?	$(3 a_g?)$	_	—	
19.7	QC-H 5	(3 b _u ?)	—		_

Das PE-Spektrum von Fumarsäure-dinitril (Abbild. 2) weist weitgehend getrennte Banden mit gut erkennbaren Schwingungsfeinstrukturen auf und sei daher zuerst ausgewertet:

(π_z)

Der ersten Bande (Abbild. 3) entspricht nach Form (intensiver $O \rightarrow O$ -Übergang) und Schwingungsfeinstruktur (Tab. 2) das C=C- und C=N-bindende π_z (2a_u)-Orbital.

(π. n)

Für den π .n-Bandenkomplex im Bereich 12.5 eV -14.0 eV (Abbild. 3) wird folgende Einteilung in π_{xy} , n_{N} und π_z -Banden vorgeschlagen: Die π_{xy} ($6a_g$)-Bande hat ihren $O \rightarrow O$ -Übergang bei 12.78 eV und enthält zwei Schwingungsprogressionen von 2160 \pm 100 und 640 \pm 100/cm, welche der C \equiv N-Valenz- und der C=C-C-Deformationsschwingung zugeordnet werden. Der π_{xy} ($5b_u$)-Bande bei 13.10 eV fehlt eine C \equiv N-Valenzschwingungsstruktur; sie ist vermutlich im Anstieg der nachfolgenden n_N -Bande versteckt. Die deutlich erkennbare C=C-C-Deformationsschwingung liegt mit 480/cm unter dem Wert in der $6a_g$ -Bande. Die Unterschiede lassen sich mit Vorbehalt auf die unterschiedlichen C=C-Bindungsanteile in den Orbitalen (7) zurückführen.

Bei 13.44 eV folgt eine steile und sehr intensive Bande; dieser werden in Analogie zu vergleichbaren Dicyanverbindungen beide n_N -Orbitale zugeordnet, die demnach innerhalb der erreichten Meßgenauigkeit energetisch entartet sind. Der "peak" im Abstand von 880/cm könnte dann – entsprechend einer geschwächten C--C-Valenzschwingung – auf σ -Anteile der n_N -Orbitale deuten. Die vierte und letzte Bande des π .n-Bandenkomplexes bei 13.67 eV wird nach Energie und schwach ausgeprägten Schwingungsfeinstrukturen von 2080 und 960/cm (Tab. 2) dem π_z (1b_g)-Orbital zugeschrieben.

(π_z)

Der 14.41 eV-Bande kann nach Lage, Form und Schwingungsfeinstruktur (Tab. 2) nur das energieärmste π_z (1a_u)-Niveau entsprechen.

(σ)

Die verbleibenden PE-Maxima bei 15.62 eV, 18.2 eV und 19.7 eV müssen nach EHT-Rechnung (Abbild. 1) zu den σ -Orbitalen 4a_g, 3a_g und 3b_u gehören. Die Progression von 2560/cm der ersten Bande belegt C-H-bindenden Anteil des zugehörigen Molekülorbitals.

Die mit Hilfe der erkennbaren Schwingungsfeinstrukturen zugeordneten PE-Banden des Fumarsäure-dinitrils liefern Erwartungswerte für die π_z - und n_N -Banden im weniger strukturierten PE-Spektrum des *cis*-Isomeren (Abbild. 2). Ohne weiteres können den Banden bei 11.15 eV und 14.38 eV die π_z -Orbitale 2b₁ und 1b₁ zugeteilt werden (Abbild. 3 und 4). Der dazwischenliegende Bandenkomplex muß zwischen 13.4 und 14.0 eV die beiden n_N -Orbitale 5a₁ und 4b₂ sowie π_z (1a₂) enthalten. Im Bereich 12.7–13.4 eV sind demzufolge die beiden π_{xy} -Banden (6a₁ und 5b₂) zu suchen. Der konstante Abstand von 1960/cm der ersten drei "peaks" dürfte einer C=N-Valenzschwingungs-Progression entsprechen, so daß die π_{xy} -Ionisierungsenergien demnach 12.77 und 13.35 eV betragen. Die Zuordnung der restlichen Banden (Tab. 1) erfolgt wie im *trans*-Isomeren nach EHT-Rechnungen; wiederum bestätigt eine 2480/cm-Schwingungsstruktur der Bande bei 15.75 eV überwiegenden σ_{C-H} -Charakter des Molekülorbitals (Abbild. 4).

3. Diskussion der Orbital-Reihenfolge

Aus der getroffenen Zuordnung der PE-Spektren folgt:

(π_z)

Die Ionisierungsenergien der ersten und dritten π_z -Banden – sowie vermutlich auch der zweiten – sind für *cis*- und *trans*-Dicyan-äthylen innerhalb der Meßgenauigkeit identisch. Dieser Befund spricht gegen eine räumliche Wechselwirkung der Cyan- π_z -Komponenten im *cis*-Isomeren.

(n_N)

Beide n_N -Ionisierungsenergien sind beim Fumarsäure-dinitril – sowie vermutlich auch beim Maleinsäure-dinitril – innerhalb der Meßgenauigkeit identisch. Eine "through bond"-Aufspaltung in n_+ - und n_- Orbitale kann daher in nichtcyclischen Cyan-Verbindungen bei mehr als drei verknüpfenden σ -Bindungen vernachlässigt werden.

(π_{xy})

Auch die Lage der π_{xy} -Banden scheint auf den ersten Blick vergleichbar (8). Ausgehend vom π_z (1b_g)-Niveau der *trans*-Verbindung, welches weitgehend ungestörten Cyan- π -Orbitalen entspricht, ergibt ein "through space"/"through bond"-Wechselwirkungsmodell für *cis*- und *trans*-Isomeres jedoch unterschiedliche Orbital-Reihenfolgen: CN

"through space" "through bond" Aus A + B = 0.90 eV und C - A = 0.32 eV folgen für vorgegebene "through space"-Aufspaltungen 2 A die "through bond"-Wechselwirkungen B und C:

1166

Α	0.0	0.1	0.2	0.3	0.4	0.5	0.6	
В	0.9	0.8	0.7	0.6	0.5	0.4	0.3	(9)
С	0.32	0.42	0.52	0.62	0.72	0.82	0.92	
			←(20 —	_→			

Eine Eingrenzung ist mit folgenden Argumenten möglich: Es muß gelten $C \ge B$, da zur "through bond"-Destabilisierung vier Orbitale der irreduziblen Darstellung a_1 und drei – nach EHT-Rechnungen energetisch weiter entfernte – b_2 -Orbitale beitragen ① Ferner sollte wegen der größeren antibindenden Anteile das $3b_2$ - über

dem $3b_u$ -Orbital liegen und daher gelten $D \leq B$ d. h. $B \geq 0.57$ eV O. Diese Bedingungen sind nach (9) nur für $A \approx 0.3$ eV erfüllt. Für eine umgekehrte Zuordnung des $6a_1$ -Orbitals zur Ionisierungsenergie 12.77 eV und des $5b_2$ -Orbitals zur Ionisierungsenergie 13.35 eV existiert bei analoger Betrachtungsweise keine Wertekombination, welche die Bedingungen (1) und O erfüllt.

Zusammenfassend ergibt ein Vergleich der PE-Spektren von *cis*- und *trans*-Dicyanäthylen: Die Ionisierungsenergien des π_z -Systems sind für *cis*- und *trans*-Isomeres identisch. Eine "through space"-Wechselwirkung tritt nur zwischen den π_{xy} -Komponenten *cis*-ständiger Cyan-Gruppen auf und läßt sich zu etwa 0.6 eV abschätzen. Die "through bond"-Wechselwirkungen sollten je nach Orbitaltyp etwa 0.6 bis 0.9 eV betragen. Es resultieren für *cis*- und *trans*-Isomeres unterschiedliche Orbitalsequenzen π_{xy} , die mit dem einfachen Modell verschieden großer σ -Anteile bei gleich- und entgegengerichteter Verdrillung von p_{π} -Orbitalen (1) in Einklang stehen.

Beschreibung der Versuche

Maleinsäure-dinitril wurde nach bekanntem Verfahren⁸⁾ aus Maleinsäurediamid und Phosphoroxychlorid dargestellt und i. Vak. sublimiert. Fumarsäure-dinitril (Merck) kann aus Benzol/n-Hexan-Gemisch umkristallisiert werden. Die Reinheit läßt sich NMR- und PEspektroskopisch prüfen.

Die He(I)-PE-Spektren wurden mit einem Photoelektronen-Spektrometer Perkin-Elmer PS 16 aufgenommen und mit den Argon-Linien geeicht (Halbwertsbreite 22-25 meV). Die Ionisierungsenergien sind jeweils Mittelwerte aus mehreren Messungen und beziehen sich auf das Bandenmaximum, bei aufgelösten Schwingungsfeinstrukturen auf das Maximum des höchsten "peaks".

Die EHT-Rechnungen⁹⁾ wurden am Zentralen Recheninstitut der Universität Frankfurt auf einer Univac 1108 ausgeführt, Slater-Exponenten und Valenzionisierungspotentiale der Literatur¹⁰⁾ entnommen. Der empirische Parameter betrug CON = 1.75. Für die Struktur wurden Äthylenbindungswinkel von 120° sowie lineare CCN-Gruppierungen angenommen und die in (7) aufgeführten Bindungsabstände eingesetzt.

⁹⁾ R. Hoffmann, J. chem. Physics 39, 1397 (1963), übersetzt und neugeschrieben in Fortran IV von R. Piccioni (1964).

¹⁰⁾ H. O. Pritchard und H. A. Skinner, Chem. Rev. 55, 745 (1955). [450/51]